




## Micropropagation



 Rapid clonal in vitro ("in glass") propagation of plants from cells, tissues or organs cultured aseptically on defined media contained in culture vessels maintained under controlled conditions of light and temperature

#### Student Learning Objectives

- Recite the plant tissue culture principles and concepts related to the commercial micropropagation, specifically by shoot culture
- Outline the critical procedures to successfully optimize each micropropagation stage in a commercial laboratory setting



## Micropropagation

In vitro propagation

Tissue culture propagation



#### MICROPROPAGATION

Small propagule
Aseptic conditions
Controlled environment
Heterotrophic growth
Rapid multiplication
Greater initial costs



#### MACROPROPAGATION

Larger propagule
Non-aseptic conditions
Less environmental control
Photoautotrophic growth
Slower multiplication
Nominal costs



## Plant Tissue Culture: Historical Perspective

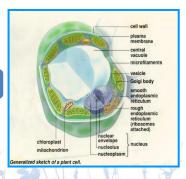




How did it all begin?

## Historical Perspective

Schleiden 1838 Schwann 1839




**Cell Theory** 

Cell is the basic unit of life

#### **Totipotency Concept**

 Each living cell of a multicellular organism should be capable of independent development if provided with the proper external conditions



**Plant Cell** 

## In Vitro Culture: Early Attempts

#### Haberlandt 1902

Innate potential of cells



**Attempted** culture of isolated leaf cells

**Formulated** plant tissue culture principles

Culture Medium: mineral salts & glucose

**Unsuccessful results** 



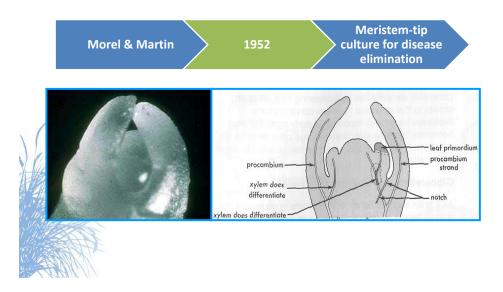
Eichhornia crassipes

## In Vitro Culture: Early Attempts

**Asymbiotic** orchid seed Knudson germination & culture

#### Concept of in vitro plant production




Knudson



Orchids

Orchid Seedlings Seedling Culture

# Toward Commercial Micropropagation 1950s



# Commercialization of Micropropagation 1960s

|   |        | 19608 | 5 |                                      |  |
|---|--------|-------|---|--------------------------------------|--|
|   | Morel  | 1960  |   | Disease<br>eradication               |  |
| 1 | Wimber | 1963  |   | in vitro<br>production<br>of orchids |  |
|   |        |       |   |                                      |  |

# Commercialization of Micropropagation 1970s & 1980s

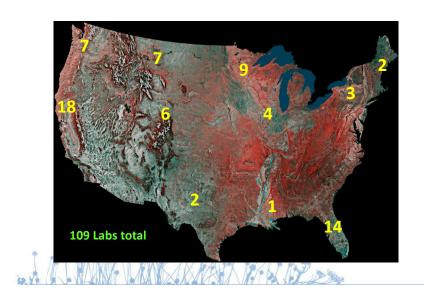


# Micropropagation: Advantages for Plant Production

Rapid & efficient propagation

**Year-round production** 

Precise crop production scheduling


Reduce stock plant space

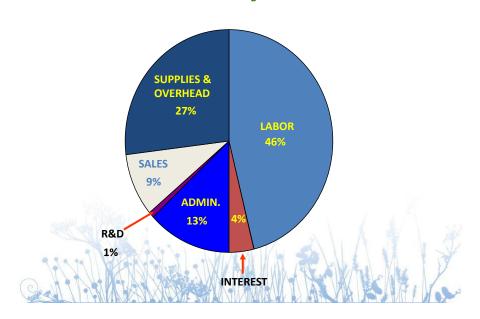
Long-term germplasm storage

Production of difficult-to-propagate species



# Commercial Micropropagation Labs (2000)



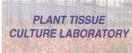

# Micropropagation Production in the United States

| Foliage Plants            | 63,695,000 |
|---------------------------|------------|
| <b>Greenhouse Flowers</b> | 11,297,000 |
| Perennials                | 9,448,000  |
| Trees & shrubs            | 15,294,000 |
| Vegetables                | 12,862,000 |
| Fruits                    | 3,721,000  |
| Miscellaneous             | 4,545,000  |
|                           |            |

Zimmerman, 2001)

Total: 120,862,000

### USA Commercial Micropropagation Laboratory Costs




# Commercial Micropropagation: A Global Industry

- Israel
- Japan
- India
- Malaysia
- Mexico
- Central America
- South America



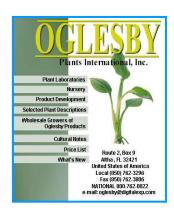








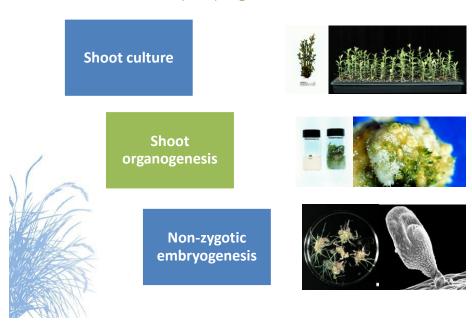
Strive to reduce labor costs!


Bangkok Flower Center
Thailand

## Oglesby Plants International, Inc.


## 1985

- Lab built in Altha, FL
- 12,000,000 plants/yr






## Oglesby Plants International, Inc.

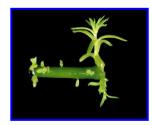


## Micropropagation Methods



## Micropropagation Methods

## 1. Shoot Culture


 Production of axillary shoots followed by rooting of individual shoots (pre-existing meristems on explants)



#### Micropropagation Methods

# 2. Shoot Organogenesis

- Production of adventitious shoots followed by rooting of individual shoots (shoot production does not originate from pre-existing meristems on the explants)
- Direct Shoot Organogenesis
- Indirect Shoot Organogenesis



**Direct Shoot Organogenesis** 



**Indirect Shoot Organogenesis** 

YUR JANA HAR

#### Micropropagation Methods

# 3. Non-zygotic Embryogenesis

- Production of non-zygotic embryos from single cells
- Direct Non-zygotic Embryogenesis
- Indirect Non-zygotic Embryogenesis



Grape non-zygotic embryo

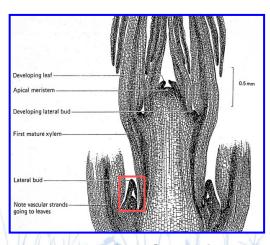


Non-zygotic embryogenesis

#### Shoot Culture

#### **Method Overview**

 Clonal in vitro propagation by repeated enhanced formation of axillary shoots from shoot-tips or lateral meristems following culture on media supplemented with plant growth regulators, usually cytokinins. Shoots produced are either rooted first in vitro or rooted and acclimatized ex vitro


#### Concept

Micropropagation from pre-existing meristems

#### Shoot Meristems

#### **Background**

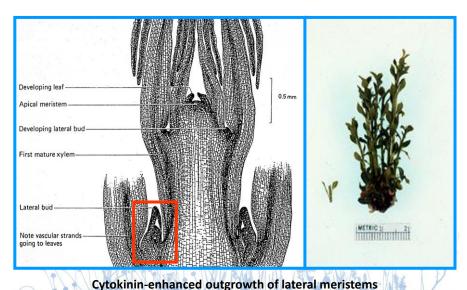
- · Axillary bud in leaf axil
- Each encloses a shoot-tip
- Each bud has potential to develop into a shoot
- Lateral bud outgrowth suppressed (apical dominance)
- Hormone interactions
- Pathogens often not present in apical meristems



**Generalized Shoot-tip** 

#### Important Discovery

Wickson, M. and K.V. Thimann. 1958. The antagonism of auxin and kinetin in apical dominance. Physiologia Plantarum 11:62-74.


Apical dominance along pea stems could be suppressed by application of cytokinin

Axillary branching enhanced by high doses of cytokinins

Basis for micropropagation via enhanced axillary branching (shoot culture)

Cytokinin in medium disrupts apical dominance and enhances outgrowth

### Shoot Culture



#### Shoot Culture

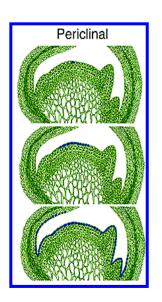
Most widely used method for commercial micropropagation

Relatively high genetic stability in the plants produced

#### Shoot Culture

# Advantages

- Reliable rates and consistency of shoot multiplication
- 3 8 fold multiplication rate per month
- Pre-existing meristems are least susceptible to genetic changes


#### Shoot Culture

## **Advantages**

 Periclinal chimeras can be propagated



Pinwheel African Violet (chimera)



#### Shoot Culture

## Disadvantages

- Less efficient than organogenesis or non-zygotic embryogenesis
- Sometime difficulties in rooting shoots produced
- Axillary shoot production not enhanced by cytokinins in some species
- Very labor intensive

#### Micropropagation Stages

#### **Shoot Culture**



Donor Plant Selection

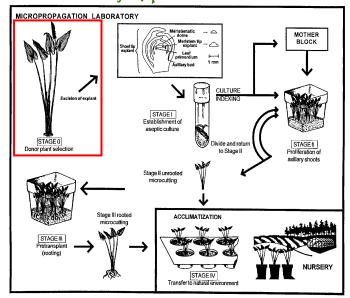


• Establishment Of Sterile Culture



• Shoot Multiplication




Pretransplant (rooting)



• Transfer To Natural Environment

Five stages to successfully produce plants via micropropagation

# STAGE 0. Donor Plant Selection & Preparation





### Shoot Culturg

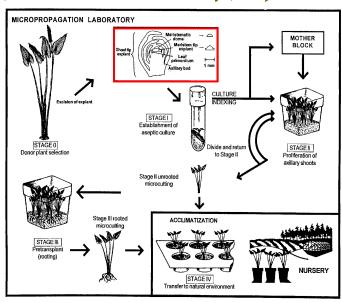
# Stage 0. Donor Plant Selection & Preparation

 Explant quality & responsiveness in vitro influenced by phytosanitary/physiological conditions of donor plant



# STAGE 0. Donor Plant Selection & Preparation

### **Donor Plant Preparation Tips**


- Maintain specific pathogen-tested stock plants
- Clean controlled conditions allowing active growth
- Low humidity, drip irrigation, antibiotic sprays

# STAGE 0. Ponor Plant Selection & Preparation

## **Donor Plant Preparation**

- Modification of physiological status
  - Trim to stimulate lateral shoots
  - Pretreat with cytokinins or gibberellic acid
  - Use forcing solution: 2% sucrose, 200 mg/l 8-hydroxyquinoline citrate and growth regulators
  - Light/temperature pretreatments

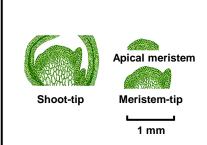
### STAGE I. Establishment of Aseptic Culture



THE P WHAT INDIVIDUAL WAR ALL COMMINION OF THE SECOND

#### Meristem and Meristem-tip Culture

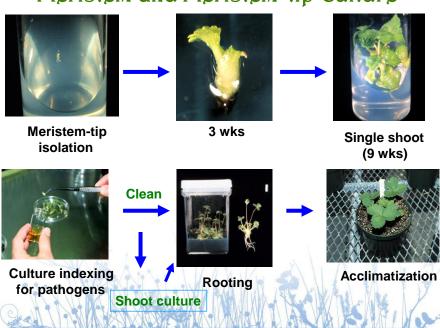
# Techniques used specifically to produce pathogen eradicated plants not directly used


for propagation

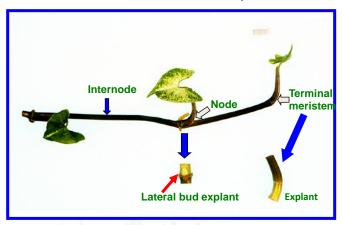
#### **Meristem Culture**

Culture of apical meristem dome

0.1 - 0.2 mm diameter


0.2 mm in length




### Meristem-tip Culture

Culture of larger (0.2 - 0.5 mm long)
meristem-tip explants that include apical
meristem plus several subtending leaf primordia

### Meristem and Meristem-tip Culture



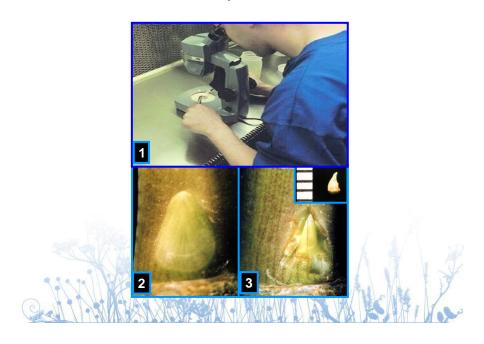
# Shoot Culture



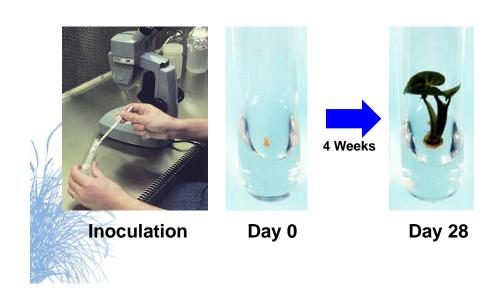
**Syngonium** 

## Surface Sterilization

10 - 15 minute rinse in tap water


1 - 2 minute soak in 50 - 70% ethanol

8 - 15 minutes in 0.1 - 1.2% sodium hypochlorite containing 2 drops Tween-20/ 100 ml (shakened)


Three five-minute sterile water rinses



# Shoot-tip Isolation



STAGE I. Culture Initiation



## STAGE I. Culture Medium

| Murashige | & | Skoog | minera | l salts |
|-----------|---|-------|--------|---------|
|-----------|---|-------|--------|---------|

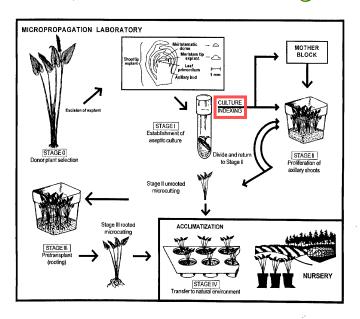
30 g/l sucrose

100 mg/l myo-inositol

0.4 mg/l thiamine

0.5 mg/l cytokinin (2-iP)

0.1 mg/liter auxin (IAA)


7 g/l agar or Phytagel

pH = 5.7

Smaller explants require more complex medium



## STAGE I. Culture Indexing



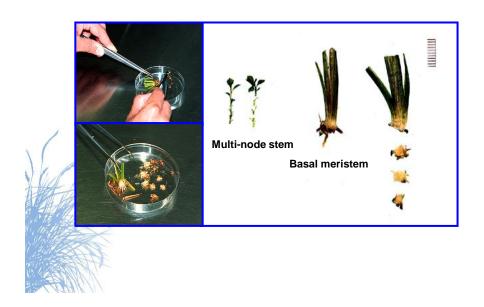
## STAGE I. Culture Contamination



**Bacterial** 

**Fungal** 

## STAGE I. Culture Contamination


Many times what you "see" is not what you get!

## The "EBD"

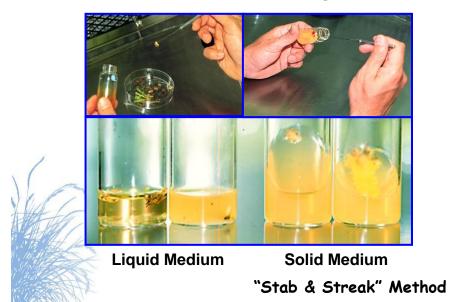
 Need to screen (index) for the presence of <u>cultivable</u> contaminants



## STAGE I. Culture Indexing



## STAGE I. Culture Indexing Medium


#### Liefert & Waites Sterility Test Medium

- Beef Extract
- Glucose
- Lab-Lemco Powder
- Murashige & Skoog Medium
- Peptone
- Sodium Chloride
- Sucrose
- Yeast Extract



Liquid Solid

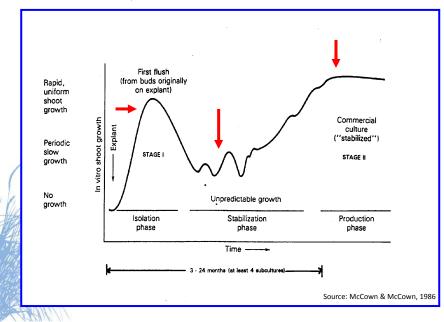
STAGE I. Culture Indexing Medium



STAGE I. Establishment of Aseptic Culture




So now we have a sterile (indexed) Stage I culture


# STAGE I. Establishment of Aseptic Culture

Misconception that shoot multiplication occurs rapidly immediately following inoculation of explant *in vitro* 

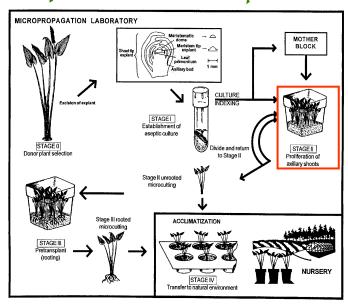
#### Three important phases of explant establishment



STAGE I. Culture Stabilization



## Mother Block Concept


## **Mother Block**

- A slowly multiplying, indexed and stabilized set of cultures
- Serve as source of cultures (explants) for Stage II multiplication




**Mother Block Room** 

# STAGE II. Shoot Multiplication









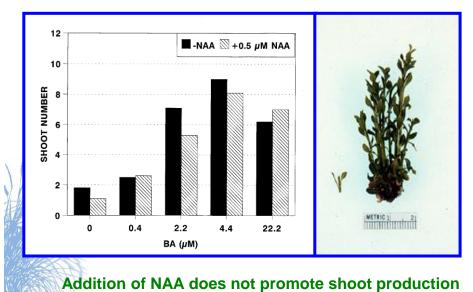
Cytokinin-enhanced axillary shoot production

### STAGE II. Shoot Multiplication

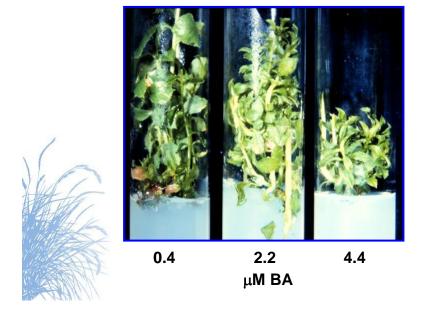
Repeated enhanced axillary shoot production

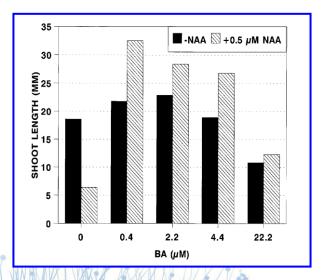
Presence of higher cytokinin level in medium to disrupt apical dominance

- 2-isopentenyladenine (2-iP)
- Benzyladenine (BA)
- Kinetin (KIN)
- Thidiazuron (Dropp®)


# Stage II selection of cytokinin type and concentration determined by:

- Shoot multiplication rate
- Length of shoot produced
- Frequency of genetic variability
- Cytokinin effects on rooting and survival


### STAGE II. Shoot Multiplication


# Auxin may be added to enhance shoot production/elongation (graph)

- α-indole-3-acetic acid (IAA)
- 1- naphthaleneacetic acid (NAA)
- indolebutyric acid (IBA)



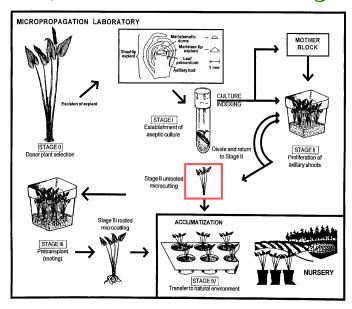
STAGE II. Shoot Multiplication





Addition of NAA promotes shoot elongation

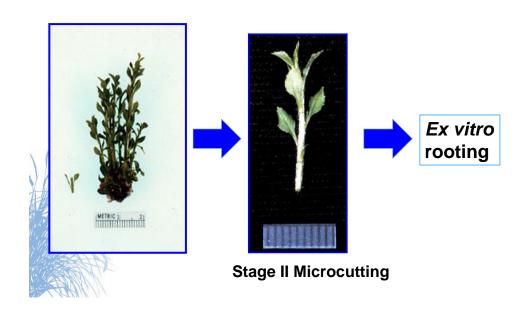
## STAGE II. Shoot Multiplication


Subculture shoot clusters at 4 - 5 week intervals

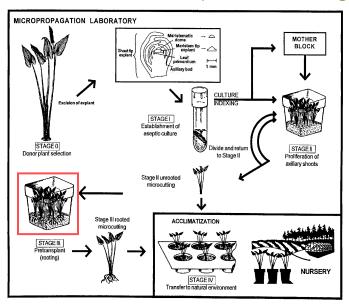
3 - 8 fold increase in shoot numbers (4.3 x 10<sup>7</sup> shoots/explant/year)

Number of subcultures possible is species/cultivar dependent:

- Frequency of genetic variability
- Some subcultured 8 48 months
- Boston fern 3 subcultures maximum
- Adventitious shoot formation (mixed culture)


# STAGE II. Shoot Microcuttings




in y

1

### STAGE II. Shoot Microcuttings



## STAGE III. Pretransplant (Rooting)







## STAGE III. Pretransplant (Rooting)

Preparation of Stage II shoots/shoot clusters for transfer to soil (prehardening)

Elongation of shoots prior to ex vitro rooting

Fulfilling dormancy requirements of storage organs

#### STAGE III. Pretransplant (Rooting)

 Adventitious rooting of individual shoots or clusters in vitro

#### Stage III rooting is not usually desirable

- Very expensive 35 75% of total production cost
- In vitro formed roots not well-developed
- Roots easily damaged during transplanting
- Numerous factors influence in vitro rooting

### Factors Important To In Vitro Rooting

#### STIMULATORY MEDIUM COMPONENTS COMMENTS

1. AUXINS

indole-3-acetic acid [IAA] indole-3-butyric acid [IBA] α-naphthaleneacetic acid [NAA]

2. HIGH SUGAR/ NITROGEN RATIO

3. PHENOLS
Phloroglucinol

Dosage effect (Conc. x time) 0.05 - 10 mg/liter for (days - weeks) or 50 - 100 mg/liter (sec - hours)

Effect depends on mineral medium

May stimulate rooting (species dependent)

## Factors Important To In Vitro Rooting

#### **STIMULATORY MEDIUM COMPONENTS COMMENTS**

4. ACTIVATED CHARCOAL May reduce light in medium or absorb inhibitory compounds



# Factors Important To In Vitro Rooting

**COMMENTS** 

**INHIBITORY MEDIUM COMPONENTS** 

| 1. CYTOKININS                       | Common observation. Eliminated in rooting medium                |
|-------------------------------------|-----------------------------------------------------------------|
| 2. GIBBERELLINS                     | Inhibit root formation                                          |
| 3. HIGH IONIC STRENGTH<br>OF MEDIUM | Confounded by effects of individual nutrients                   |
| 4. AGAR                             | Exact cause unknown; agar may be impure and variable in content |
|                                     |                                                                 |

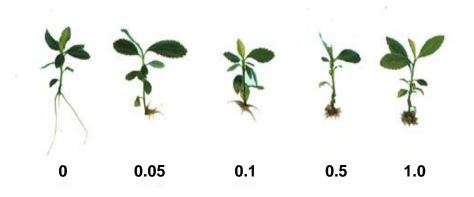
## STAGE III. Pretransplant (Rooting)

# Auxin type & concentration used dependent on:

 Percent (%) rooting, root number and length

## Auxin Effects on In Vitro Stage III Rooting<sup>1</sup>

| Treatment IBA (mg/L) | % Rooting | Root Number | Root length (mm) |
|----------------------|-----------|-------------|------------------|
| 0                    | 37        | 2.4         | 23.3             |
| 0.05                 | 43        | 3.5         | 18.1             |
| 0.1                  | 55        | 4.1         | 14.2             |
| 0.5                  | 71        | 5.7         | 6.5              |
| 1.0                  | 84        | 7.1         | 4.3              |


<sup>&</sup>lt;sup>1</sup>Rooting responses of 10 mm microcuttings of *Aronia arbutifolia* after 28 days

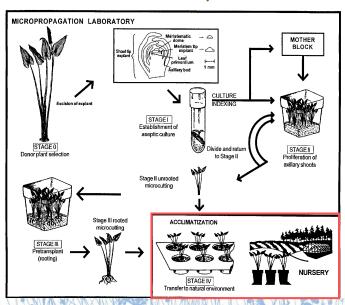
## Auxin Effects on In Vitro Stage III Rooting<sup>1</sup>

| Treatment IBA (mg/L) | % Rooting | Root Number | Root length (mm) |
|----------------------|-----------|-------------|------------------|
| 0                    | <b>37</b> | 2.4         | 23.3             |
| 0.05                 | 43        | 3.5         | 18.1             |
| 0.1                  | 55        | 4.1         | 14.2             |
| 0.5                  | 71        | 5.7         | 6.5              |
| 1.0                  | 84        | 7.1         | 4.3              |

<sup>&</sup>lt;sup>1</sup>Rooting responses of 10 mm microcuttings of *Aronia arbutifolia* after 28 days

## Stage III Rooting




IBA (mg/L) DAY 28

## STAGE III: Pretransplant (Rooting)

# Auxin type and concentration used dependent on:

- Percent (%) rooting, root number and length
- Auxin effects on post-transplant growth
  - NAA used in Stage III may retard Stage IV growth

# STAGE IV. Transfer to Natural Environment



Ultimate success of shoot culture depends on ability to re-establish vigorously growing quality plants from *in vitro* to *ex vitro* conditions

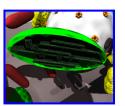


High humidity & low light In vitro

Lower humidity & high light Ex vitro

## STAGE IV. Transfer to Natural Environment

#### **ACCLIMATIZATION:**


 Process whereby plants physiologically and anatomically adjust from in vitro to ex vitro cultural and environmental conditions

Two reasons micropropagated plants may be difficult to re-establish *ex vitro*:

- 1. Low photosynthetic competence (heterotrophic nutrition)
- 2. Poor control of water loss

# 1. Low Photosynthetic Competence

- Plants largely heterotrophic (may be photomixotrophic)
- Poorly differentiated leaf structure
- Poorly developed chloroplasts
- Poor CO<sub>2</sub> fixation



## STAGE IV. Transfer to Natural Environment

#### "Lifeboat Effect"

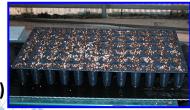
 Need for carbohydrate reserve (starch) in stems and leaves during initial acclimatization



#### **Example**

Cauliflower begins carbon fixation 7 days post-transplant

14 days required for positive carbon balance


### 2. Poor Control of Water Loss

- Reduced cuticle (wax) development
- Abnormal stomata development and function
- Non- or marginally functional roots

## STAGE IV. Transfer to Natural Environment

# 3. Other Factors Affecting Acclimatization

- Plant Quality
  - Culture medium carry over effects
  - Bacterial/fungal contamination
- Soil Mix Selection
  - Pasteurized
  - Well drained
  - Dilute fertilizer (150 mg/L N)





**Planting Stage III rooted microcuttings** 

# STAGE IV. Transfer to Natural Environment

#### 3. Other Factors Affecting Acclimatization & Quality

#### **Container/Medium/Plug Size Considerations**



Single Shoot Cluster

**MICROCUTTING TYPE** 



12-cell pack 4-cell pack

12-cell pack

4-cell pack

SINGLE SHOOT

SHOOT CLUSTER

# 3. Factors Affecting Acclimatization & Quality (cont.)

- Light & Temperature Control
  - Light (photoperiod & intensity)
  - Move plants through one or more intermediate light levels (2-fold increase every 6 - 14 days)
- Humidity & Moisture Control
  - Near 100% humidity in vitro
  - Humidity gradually decreased

## STAGE IV. Transfer to Natural Environment

### 4. Acclimatization Structures

- Propagation dome
- Humidity tent
- Automatic mist system
- Fog system

## Propagation Dome



ADVANTAGES
Flexibility
Maintains high humidity
Easy to use

DISADVANTAGES
Heat Buildup
Labor intensive

## Humidity Tent



ADVANTAGES
Inexpensive
Maintains high humidity Must be monitored
Easy to construct

### Automatic Mist System



#### **ADVANTAGES** Automatic Misting Adjustable misting Lower labor input

**DISADVANTAGES Nutrient leaching** Algae/fungal buildup

## Fog System



**ADVANTAGES** 100% humidity No nutrient leaching High maintenance Decrease heat buildup **Lowers light levels** 

**DISADVANTAGES Expensive** 



Fully acclimatized Syngonium



## Micropropagation Videos

- 1. Laboratory Procedures for Tissue Culture: A Beginner's Guide
- 2. Handling Tissue Culture Plants in the Nursery



