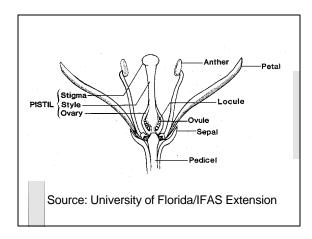
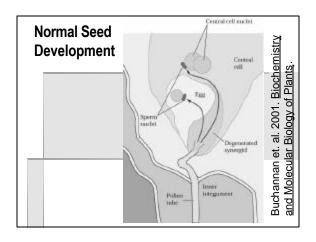
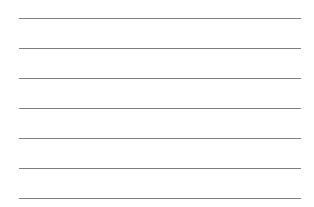

Unusual Types of Seed Development


Dr. Milton E. Tignor, Jr. (Buddy) Plant and Soil Science Department The University of Vermont





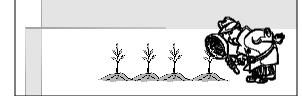
"Convince me that you have a seed there, and I am prepared to expect wonders." --Henry David Thoreau (1817-1862) American Writer

Unusual Seed Development

- Apomixis
- Polyembryony

Apomixis

- apo "without" + mixis "mixing"
- Asexual seed production
- Results in embryo formation that uses other than normal meiotic events
- Genotype of embryo will be identical to that of the seed parent
- Obligate or Facultative Apomixis
- Occurs in 35 families and 300 species of plants


Why is the concept of apomixis important?

- Depending on the plant species it may allow a plant breeder to permanently fix the genes of a superior selection in seed
- Apomixis, although relatively uncommon occurs often enough to make it important to horticulturalists and agronomists

Plants with apomictic seed development Citrus Mango Mangosteen Buffelgrass Bahia grass Sorghum

When do you suspect apomixis?

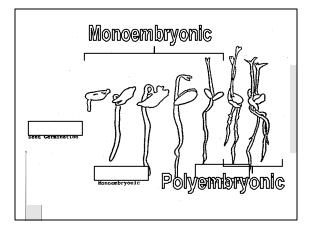
- seedlings appear identical to parent
- Multiple seedlings per seed
- Use DNA analysis to confirm suspicions

Apomixis (continued)

- 1. Nonrecurrent
- 2. Gametophytic
 - Diplospory
 - Apospory
- 3. Sporophytic

Apomixis in Citrus

- 2 cotyledons
- 1 or zero sexual embryos
- 1 to >6 nucellar embryos
- nucellar embryony is very rare in plants



Polyembryony

- Refers only to individual seeds that have more than one embryo
- Four types of polyembryony are recognized in angiosperms.

4 Types of Polyembryony

- 1. Additional embryos 'bud-off' from normal sexual embryo
- 2. Additional embryos formed from cells in nucellar tissue or integuments
- 3. Multiple embryo sacs can be formed with in a single ovule
- 4. Additional embryos result from a synergid functioning as an egg cell

How do you tell a zygotic seedling from a nucellar seedling when the species also displays polyembryony?

- Plant breeders have dealt with this in citrus for sometime.
- If there are more than 2 embryos the breeder will cull the "runts" and "bulls"
- Seedlings that are much smaller than the majority or much larger are likely the zygotic seedlings and won't be true to type.

Future Research

- Using molecular biological techniques to introduce apomixis into purely sexual plant species
- This could make have the trait.

apomicts possible For More: van Dijk, P. and J. van in a variety of plant Damme. 2000. Apomixis species that don't technology and the paradox of sex. Trends in Plant Science. 5(2): 81-84.

Questions you may want to ponder?

- What implication would an apomixis have on a plant species evolution over time?
- Can you think of a situation when a citrus breeder might save the runts or bulls rather than cull them?
- For each of the four 'roads' to polyembryony make a guess as to the genotype for the embryos (identical to seed parent or different)

Other Sources With Detailed Information on Apomixis and Polyembryony

- Jackson, L.K. and F.S. Davies. 1999. Citrus Growing in Florida. University Press of Florida: Gainesville, FL.
- Hartman, H.T., D. E. Kester, F.T. Davies, Jr., and R.L. Geneve. 2002. Plant Propagation: Principles and Practices. 7th ed. Prentice Hall: Upper Saddle River, NJ.
- Poehlman, J.M. and D. A. Sleper. 1995.
 Breeding Field Crops. 4th ed. Iowa State University Press: Ames, IA.